On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:
الفعل
تَاخَمَ ; اِتَّصَلَ بِـ ; حَدَّ ; جانَبَ
الصفة
مُتَاخِم ; مُتَمَاسّ ; مُتَلَامِس ; مُتَلَاصِق ; مُتَلَاصِق ; مُتَّصِل ; مُتَّصِل ; مُقَابِلٌ ( لِـ ) ; مُتَجَاوِر ; مُتَمَاسّ ; مُتَاخِم ; مَاسّ ; مَاسّ ; مَاسّ ; مَاسّ ; لَامِس ; لَامِس ; مُتَجَاوِر ; مُحَاذٍ ; مُقَابِلٌ ( لِـ ) ; مُلَامِس ; مُلَامِس ; مُلَاصِق ; مُلَاصِق ; مُتَلَامِس ; مُقَابِل ; مُجَانِب ; مُحَاذٍ ; مُحَاذٍ ; مُحَاذٍ ; مُحَاذٍ ; مُحَاذٍ ; مُجَاوِر ; مُجَاوِر ; مُجَانِب ; مُقَابِل
Tree-adjoining grammar (TAG) is a grammar formalism defined by Aravind Joshi. Tree-adjoining grammars are somewhat similar to context-free grammars, but the elementary unit of rewriting is the tree rather than the symbol. Whereas context-free grammars have rules for rewriting symbols as strings of other symbols, tree-adjoining grammars have rules for rewriting the nodes of trees as other trees (see tree (graph theory) and tree (data structure)).